Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620954

RESUMO

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hormônio Liberador de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Genes Dominantes/genética , Hormônio Liberador de Gonadotropina/deficiência , Haploinsuficiência/genética , Humanos , Síndrome de Kallmann/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Peixe-Zebra/genética
2.
Neuroendocrinology ; 110(11-12): 959-966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31726455

RESUMO

INTRODUCTION: Constitutional delay of growth and puberty (CDGP) is the most prevalent cause of delayed puberty in both sexes. Family history of delayed puberty (2 or more affected members in a family) has been evidenced in 50-75% of patients with CDGP and the inheritance is often consistent with autosomal dominant pattern, with or without complete penetrance. However, the molecular basis of CDGP is not completely understood. OBJECTIVE: To characterize the clinical and genetic features of a CDGP cohort. METHODS: Fifty-nine patients with CDGP (48 boys and 11 girls) underwent careful and long-term clinical evaluation. Genetic analysis was performed using a custom DNA target enrichment panel designed to capture 36 known and candidate genes implicated with pubertal development. RESULTS: All patients had spontaneous or induced pubertal development (transient hormonal therapy) prior to 18 years of age. The mean clinical follow-up time was 46 ± 28 months. Male predominance (81%), short stature (91%), and family history of delayed puberty (59%) were the main clinical features of this CDGP -cohort. Genetic analyses revealed 15 rare heterozygous missense variants in 15 patients with CDGP (25%) in seven different genes (IGSF10, GHSR, CHD7, SPRY4, WDR11, SEMA3A,and IL17RD). IGSF10 and GHSR were the most prevalent affected genes in this group. CONCLUSIONS: Several rare dominant variants in genes implicated with GnRH migration and metabolism were identified in a quarter of the patients with familial or sporadic CDGP, suggesting genetic heterogeneity in this frequent pediatric condition.


Assuntos
Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Puberdade Tardia/diagnóstico , Puberdade Tardia/genética , Adolescente , Brasil , Criança , Feminino , Seguimentos , Predisposição Genética para Doença , Testes Genéticos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...